
USOO5991779A

United States Patent (19) 11 Patent Number: 5,991,779
Bejar (45) Date of Patent: *Nov. 23, 1999

54 PROCESS FOR DISTRIBUTED GARBAGE OTHER PUBLICATIONS
COLLECTION

Plainfosse et al., Distributed Garbage Collection in the
75 Inventor: Arturo Bejar, Mountain View, Calif. System is Good, IEEE, pp. 94-99, Oct. 1991.

O O Kafura et al., Concurrent and Distributed Garbage Collec
73 ASSignee: Eric Communities, Cupertino, tion of Active Objects, IEEE, pp. 337-350, Apr. 1995.

Partridge et al, Speculative Parallelism in a Distributed
* Notice: Thi tent i biect t terminal di Graph Reduction Machine, IEEE, pp. 771-779, Jan. 1989.

R ent IS Subject to a terminal dIS- Yu et al., Conservative Garbage Collection on Distributed
Shared Memory Systems, IEEE, pp. 402-410, Dec. 1993.
Gupta et al., Reliable Garbage Collection in Distributed

21 Appl. No.: 09/152,646 Object Oriented Systems, IEEE, pp. 324–328, Oct. 1988.
1-1. Kordale et al., Distributed/Concurrent Garbage Collection in

22 Filed: Sep. 14, 1998 Distributed Shared Memory Systems, IEEE, pp. 51-60, Dec.
1993. Related U.S. Application Data
Ferreira et al., Persistence by Reachability in Distributed

63 Continuation of application No. 08/659,194, Jun. 6, 1996, Shared Memeory through Garbage Collection, IEEE, pp.
Pat. No. 5,819,299. 394-401, May 1996.

(51) Int. Cl." .. G06F 17/30 Kuechlin et al., On Multi-Threaded List-Processing and
52 U.S. Cl. ... 707/206; 707/10 Garbage Collection, IEEE, pp. 894–897, Dec. 1991.
58 Field of Search 707/206, 10; 395/622;

364/200 Primary Examiner Thomas G. Black
Assistant Examiner Frantz Coby

56) References Cited A.C.Aggie, Philip H. Albert; Townsend and

U.S. PATENT DOCUMENTS 57 ABSTRACT

4,714,992 12/1987 Gladney et al. 364/200 A process and System for distributed garbage collection in a
4,755,939 7/1988 Watson 364/300 distributed network includes transmission of a root request
4,797.810 1/1989 McEntee et al. ... 364/200 message tagged with a unique identifier from a Suspect node
4,807,120 2/1989 Courts 364/200 to all nodes of the Suspect nodes inverse reference graph
5,025,367 6/1991 Gurd et al..... ... 364/200 pec grap
5,051891 9/1991 MacPhail 364/200 looking for a rooted (persistent) object. Objects respond tO
5,088,036 2/1992 Ellis et al. 395/425 the root request message with an affirmative O disregard
5,136,706 8/1992 Courts 395/622 response (indicating a root Or coupling to a root) tagged with
5,241,673 8/1993 Schelvis 395/622 the Same identifier or that no relevant garbage collecting
5,261,088 11/1993 Baird et al. 395/622 information is available from a particular branch. The SuS
5,274,804 12/1993 Jackson et al. 395/622 pect node, in the absence of any affirmative responses, is
5.53, 3. E. s al. . - - - 3: identified as obsolete (garbage) and may be collected. Other
2- -- Y-2 opka et al....... - - - objects having the Same identifier are identified and/or

E. E. E. "...M. E. collected as garbage as well.
5,560.003 9/1996 Nilsen et al. 395/622
5,819,299 10/1998 Bejar 707/206 2 Claims, 6 Drawing Sheets

OBJECS
EN SUSPECT

LST?

YES
520

SELECTAF (BJECT
FRO SUSPECT LIST

525

GENERATE
ENFER

TRANSIRCOT
REQUES MESSAGEO
REFERRINS NODES;
EACH NOETAGSEB
Th DENFER

REQUEST REFLY
I

fES
SS5

ARK OJECTAS
REEL RE

A. REPLES

ETFY 03.JECTAS
GARBAGE

550

RECEIVED

REMCE OBJECT FR0.
SUSPECIST

U.S. Patent Nov. 23, 1999 Sheet 1 of 6 5,991,779

A/G /

U.S. Patent Nov. 23, 1999 Sheet 2 of 6 5,991,779

A/G 2

U.S. Patent Nov. 23, 1999 Sheet 3 of 6 5,991,779

-
340

34 NETWORK TOOTHER
DRIVER ACHINES

CENTRAL PROCESSING UNIT
334 326 304

KEYBOARD
36 DRIVER KEYBOARD

38 328 306

GRAPHICS MOUSE
PROGRAM DRIVER MOUSE
STORAGE

320 330 308

sides
322

332 30

DRIVER DISPLAY

ELEMENT

324

MAGE
MEMORY

MEMORY

A/G 3.

(CPU)

GRAPHCS
ACCELERATOR

U.S. Patent Nov. 23, 1999 Sheet 4 of 6 5,991,779

A/6 4.

U.S. Patent Nov. 23, 1999 Sheet 5 of 6 5,991,779

505
1. 500

OBJECTS
IN SUSPECT

LIST?

YES
52

SELECT AN OBJECT
FROM SUSPECT LIST

52

GENERATE
IDENTIFIER

530

TRANSMIT ROOT
REQUEST MESSAGE TO
REFERRING NODES;
EACH NODE TAGGED
WITH IDENTIFIER

AFF ROOT
REQUEST REPL

WITH ID?
ALL REPLIES
RECEIVED

YES ,545
IDENTIFY OBJECTAS MARK OBJECT AS

REMOTELY ROOTED GARBAGE

550

REMOVE OBJECT FROM
SUSPECT LIST

A/G 5.

U.S. Patent Nov. 23, 1999 Sheet 6 of 6 5,991,779

STAR Y-605 1. 600

65

ID OF
NCOMING MESS.

STORED?
REPLY DISREGARD

TAGGED WITH IDENTIFIER

STORE DENTIFIER

REPLY YESTAGGED WITH
DENFER

TRANSMIT ROOT
REQUEST TO ALL
REFERRING NODES,
EACH NODE TAGGED
WITH IDENTIFIER

AFE ROOT
REQUEST REPLY

WITH ID
AL REPLIES
RECEIVED?

REPLY DISREGARD
TAGGED WITH UNIQUE

EDENTFER

REPLY YES AGGED WITH
IDENTIFIER

A/G 6.

5,991,779
1

PROCESS FOR DISTRIBUTED GARBAGE
COLLECTION

CROSS-REFERENCES TO RELATED
APPLICATIONS

The present application is a continuation of and claims the
benefit of U.S. application Ser. No. 08/659,194, filed Jun. 6,
1996 now U.S. Pat. No. 5,819,299 the disclosures of which
are incorporated by reference.

BACKGROUND OF THE INVENTION

The present invention relates generally to distributed
computer Systems in which multiple processes are able to
access network objects, and particularly to a method for
garbage collecting cycles of distributed network objects.

The term garbage collection describes a process imple
mented on one or more interconnected general purpose
machines (real or virtual) for effectively deleting obsolete
data from a memory associated with the machines. Problems
and Solutions to garbage collection are well known. For
example U.S. Pat. No. 5,241,673 and U.S. Pat. No. 5,446,
901, hereby expressly incorporated by reference for all
purposes, describe general background information as well
as conventional Solutions to Distributed Garbage Collection.
An object is a construct of a computing machine. To

instantiate an object, a machine allocates a portion of its
memory in order to define and make use of the object.
During operation of a machine, objects are continually
created, used and obsoleted. AS memory is limited, it is
desirable to identify and collect obsolete objects (objects no
longer required by any existing object) So that memory
previously allocated to obsolete objects may be used by the
machine, Such as to create new objects. Sometimes collec
tion of these obsolete objects lags behind their obsolescence
and the operation of the machine may begin to be degraded
as a consequence.

Conventional Solutions for garbage collection, Such as
those described in the patents incorporated above, include
methods for checking each object to determine whether it is
obsolete and should be collected. In a method of this type,
referred to as a mark and Sweep process, an analysis begins
at all root objects Stored in the memory of all of the machines
making up the distributed System. A forward reference graph
defines a relationship between a root object and all the
Secondary objects that the root object references. The Sec
ondary objects may include references to tertiary objects,
which may include further references to other objects.
Objects may be instantiated in different portions of the
collective memory of all of the concurrent processes in all of
the different machines. Mark and Sweep requires that Several
messages be sent to and received from every object. AS a
consequence, mark and Sweep Solutions to distributed gar
bage collection are expensive in terms of time and message
overhead.

In addition to these incorporated patents, another refer
ence describing a conventional Solution to Distributed Gar
bage Collection is Garbage Collection on an Open Network,
International Work on Memory Management, Spring Verlag
LNCS 986, 1985 by Matthew Fuchs, also hereby expressly
incorporated by reference for all purposes. Garbage Collec
tion on an Open Network describes a total solution to
Distributed Garbage Collection that makes use of inverse
reference graphs. Construction, maintenance and use of
inverse reference graphs is well known and will not be
described in detail herein. An inverse reference graph
includes objects represented as nodes with edges between

15

25

35

40

45

50

55

60

65

2
pairs of nodes defining a referential relationship between the
pairs of objects represented by the nodes.

Cyclical garbage is a Special class of garbage that requires
Special processing for identification So that it may be col
lected. FIG. 1 is an inverse reference graph for a cycle 100
including a collection of three objects (first object 102,
second object 104, and third object 106). In cycle 100, object
102 has a first reference arrow 108 pointing to object 104.
The direction of reference arrow 108 reflects that object 104
references object 102. In other words, reference arrow 108
starting from object 102 and extending to object 104 means
that object 102 is referenced by object 104. Arrows directed
away from a node represented on an inverse reference graph
define the branches of the node.

In cycle 100, object 104 has a second reference arrow 110
pointing to object 106. Object 106 has a third reference
arrow 112 pointing to object 102. The references between
the objects are cyclical. Unless one of the objects represents
a rooted object, either a local root, or a remote root, cycle
100 is garbage. A locally rooted object is an object that is
being referenced by a rooted (persistent, non-collectable
object) in the same machine as the object. A remotely rooted
object is an object referenced by only objects in remote
machines, and all references originate from one or more
locally rooted objects.

In the case where cycle 100 resides in a single simple
machine with few objects, it is Straightforward and inex
pensive (in terms of time and a number of message
exchanges among the objects) to identify cycles. When cycle
100 becomes distributed across two or more machines and
the distributed machines have large numbers of objects to
create, use and to identify as obsolete, prior art Solutions
become expensive to adequately deal with collecting cycles.

SUMMARY OF THE INVENTION

The present invention provides method and apparatus for
Simply, efficiently and economically identifying and collect
ing garbage, particularly a Special class of garbage known as
cycles, particularly in a distributed network. By relying on
local garbage collection for collection of isolated and readily
determinable garbage, the present invention permits a multi
tiered garbage collection process wherein collection of
cycles proceeds asynchronously with regard to collection of
other obsolete objects from memory. Identification of cycles
using the preferred embodiment is fairly efficient as mea
Sured by message overhead.

According to one aspect of the invention, it includes a
general purpose computer System. The general purpose
computer System includes a multiplicity of concurrently
active processes executing on a plurality of machines for
instantiating a plurality of objects, a memory, coupled to the
plurality of machines, for Storing the plurality of objects, and
a garbage identifier, coupled to the memory that maintains a
Suspect list of a Subset of the plurality of objects that are
candidates for garbage collection, Selects a first object from
the Suspect list, generates an identifier, transmits a root
request message, tagged with the identifier, to each of a
plurality of referring objects of the first object as identified
by an inverse reference graph, wherein each object of the
plurality of objectS is represented as a node on the inverse
reference graph and wherein edges define a referential
relationship between any particular two objects of the plu
rality of objects, receives a reply message, tagged with the
identifier, from each object in a subset of the plurality of
referring objects that is directly coupled to the first object,
the reply message indicating whether any object in the

5,991,779
3

Subset of the plurality of referring objects is relevant to
determining whether the first object is garbage, and identi
fies the first object as garbage when none of the reply
messages, tagged with the identifier and received from the
Subset of referring objects, indicates any object in the Subset
of the plurality of referring objects is relevant to determining
whether the first object is garbage.

In operation, the general purpose computer System is part
of a distributed computer System having a plurality of
concurrently active processes that have instantiated a plu
rality of objects in a memory associated with the distributed
computer System. A method of operating the distributed
computer System includes the Steps of Selecting a Suspect
object from the plurality of objects for testing to determine
whether the Suspect object is garbage, identifying an inverse
reference graph for the Suspect object wherein each object of
a Subset of objects of the plurality of objects referentially
coupled to the Suspect object are represented as nodes on the
inverse reference graph and wherein each edge between a
pair of nodes defines a referential relationship between a pair
of objects of the subset of the plurality of objects testing
each branch of the inverse graph coupled from a Suspect
node associated with the Suspect object to a referring node
asSociated with a referring object to determine whether any
branch of the inverse reference graph is relevant to establish
whether the Suspect object is garbage, and identifying the
Suspect node as garbage when no branch is relevant to
establish whether the Suspect node is garbage.

In an alternate preferred embodiment, a collection mes
Sage may be sent to all objects Storing an identifier associ
ated with a test object determined to be garbage.
Additionally, a test object having a cycle in its inverse
reference graph is properly tested and identified as garbage
if no rooted objects exist anywhere in the inverse reference
graph for the test object.

Reference to the remaining portions of the Specification,
including the drawing and claims, will realize other features
and advantages of the present invention. Further features
and advantages of the present invention, as well as the
Structure and operation of various embodiments of the
present invention, are described in detail below with respect
to accompanying drawing. In the drawing, like reference
numbers indicate identical or functionally Similar elements.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is an inverse reference graph for a cycle including
a collection of three objects (first object, Second object, and
third object);

FIG. 2 is a general purpose computer System;
FIG. 3 is a block schematic diagram of functional units of

the computer system shown in FIG. 2;
FIG. 4 is a diagram of a distributed network environment

for implementing the present invention;
FIG. 5 is a flowchart of a preferred method for a garbage

collecting System to determine whether to collect a Selected
node, and

FIG. 6 is a flowchart of a preferred method for operating
Suspect nodes in accordance with the present invention.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

FIG. 2 is a general purpose computer System 10 including
a main unit 12, a fixed disk 14, a keyboard 16, a relative
pointing device 18 (e.g. mouse or trackball), monitor 20 with
display 22. A removable storage cartridge 24 (e.g. floppy

15

25

35

40

45

50

55

60

65

4
disk) interacts with a complementary device, Such as a
floppy disk drive, in main unit 12. Removable Storage
cartridge 24 stores data useable by computer system I10 to
configure and control its operational and functional charac
teristics in a well known fashion. Specifically, cartridge 24
stores control information accessible by system 10 to
execute the processes described in FIG. 5 and FIG. 6, as
appropriate.

FIG. 3 is a block schematic diagram of functional units of
computer system 10 shown in FIG. 2. Computer system 10
includes keyboard 304, mouse 306, graphics display 310,
printer 312, central processing unit 314, random acceSS
memory 316, graphics program Storage 318, disk Storage
320, element memory 322, image memory 324, keyboard
driver 326, mouse driver 328, printer driver 330, display
driver 332, bus 334, graphics accelerator 336, and network
driver 340. CPU 314 implements the processes depicted by
the flowcharts of FIG. 5 and FIG. 6.

FIG. 4 is a diagram of a distributed network 400 for
implementing the present invention. Network 400 includes
a plurality of computer Systems 10 interconnected by one or
more network protocols, as well known. The network pro
tocols may include, for example, an ethernet bus 405
coupled to a repeater 410, as well as a token ring 415
coupled to one or more computer Systems 10. Other proto
cols and interconnection mechanisms are possible and may
be used without departing from the present invention.

In the following description, network 400 is described as
a multiplicity of computer Systems 10, each implementing
an operating System capable of executing one or more
processes. For purposes of the following description, each
computer System 10 is a separate real machine having a
Separate associated memory. Each machine includes a pro
ceSS that creates objects by allocating Some of its associated
memory to instantiate an object. AS objects are created, used
and obsoleted, each machine includes a garbage collecting
process to identify isolated obsoleted objects and to remove
them from memory. In Some cases, the garbage collecting
process may not actually remove the object from memory
but indicate that the memory previously used by the object
is available for use or mark the object for collection by
another process. These events are referred to as collecting
the object from memory.

In other embodiments, a single computer System 10 may
implement two or more virtual machines, each having an
asSociated portion of a single physical memory allocated to
each virtual machine. Each virtual machine also includes a
local garbage collecting process for removing isolated obSo
leted objects from its portion of memory. Virtual machines
and real machines are treated as equivalent for purposes of
the present invention.

Each machine includes a mechanism for tracking objects
instantiated in its memory. Distributed network 400 includes
two or more machines interconnected to exchange messages
between the various objects and processes present on the
machine. The exchange of messages permits distributed
network 400 to define reference graphs of the interrelation
ship of the objects present on the distributed machines. AS
discussed above, an object present in one machine may have
a hierarchical dependency on one or more objects present in
one or more other machines. AS the number of objects and
the number of machines increases, identifying and collecting
obsoleted objects becomes increasingly difficult.
The preferred embodiment of the present invention pro

vides for distributed network 400 to collectively implement
a distributed garbage collecting process. AS will be more

5,991,779
S

particularly explained below, computer 10 implements the
processes described in the flowcharts of FIG. 5 and FIG. 6
to identify a cycle of two or more objects distributed in two
or more machines. In the most preferred embodiment, an
identified cycle will be collected when it is identified. In
other embodiments, the identified cycle will be collected by
the individual local garbage collection mechanisms operat
ing on the individual objects in the identified cycle. This
mechanism collectively collects all of the objects previously
in the identified cycle.

By definition, a cycle does not include any rooted objects,
locally rooted objects or remotely rooted objects. A rooted
object is an object that is referred to (directly or indirectly)
by one or more objects that the garbage collector considers
to be persistent (uncollectible). A locally rooted object is an
object that is referred to by a rooted object in the same
machine, while a remotely rooted object is an object that is
referred to only by objects in remote machines and all of
these references originate in one or more locally rooted
objects. One of the characteristics of computer system 10 is
that any locally rooted object is able to determine when it
loses its locally rooted Status.

Distributed network 400 is able to effectively implement
the distributed garbage collection of garbage involving
cycles, particularly those cycles having objects in two or
more machines. The preferred embodiment of the invention,
computer systems 10 of distributed network 400, imple
ments the process shown by the flowcharts of FIG. 5 and
FIG. 6, as appropriate, in order to identify the cycles. The
specific configuration of system 10 or of network 400 is
representative of an example System and network, respec
tively. It is well known that other systems and networks
could implement the present invention. Thus, the description
of system 10 and network 400 are not to be taken as
limitations of the present invention.

FIG. 5 is a flowchart of a preferred method for a garbage
collecting process 500 to determine whether to collect a
Selected object under analysis. Garbage collecting proceSS
500 begins (step 505) upon detection of an object in a
Suspect list, upon expiration of a preset period, or upon Some
asynchronous event (Such as when available memory
becomes critical) that triggers an analysis of an object. AS
the present invention presumes that each machine has Some
local garbage collection proceSS available for identifying
and collecting isolated obsoleted objects, garbage collecting
process 500 may be relatively lazy with regard to a
frequency of operation Since the primary focus of the
preferred embodiment is on identifying and/or collecting
cycles, or garbage referencing involving cycles.

In any event, a triggering event causes garbage collecting
process 500 to advance from START, step 505, to step 510
to test for the presence of objects in a Suspect list. Distrib
uted network 400 maintains a suspect list and adds an object
to the Suspect list whenever the object becomes Suspect (a
candidate for collection). In the preferred embodiment, two
events will cause an object to become Suspect.

In the first case, a locally rooted object that Stops being
locally rooted will be suspect if that formerly locally rooted
object had remote references to it and also has remote
references to other objects. If the formerly locally rooted
object has no references to other objects, Such object cannot
be in a cycle and will be collected by the local garbage
collector process whenever the object(s) referring to it go
away.

In the Second case, a remotely rooted object becomes
Suspect whenever the remotely rooted object loses a remote

15

25

35

40

45

50

55

60

65

6
reference to it. At step 510, garbage collecting process 500
tests whether there is any object in the suspect list. When the
test at Step 510 is negative, (no Suspect objects) garbage
collecting process 500 advances to step 515, DONE, to
terminate garbage collecting process 500.

However, when one or more objects are in the Suspect list,
the test at Step 510 is affirmative and garbage collecting
process 500 advances to step 520. Step 520 selects a test
object from the suspect list to determine whether it should be
identified as garbage and Subject to collection. After Select
ing the test object from the Suspect list at Step 520, garbage
collecting process 500 generates, at step 525, an identifier. In
the preferred embodiment, the identifier is unique and is a
Sufficiently large random number to reduce the chance that
two identifiers having the same value will be selected for
different test objects undergoing concurrent analysis. The
identifier Serves to alert objects participating in the process
as to whether any specific root request message is being
resolved.

After generating the identifier at Step 525, garbage col
lecting proceSS 500 transmits a root request message from
the test object to all those objects that directly refer to it (step
530). These objects are called reference objects and are the
origination of each branch of the inverse reference graph for
the test object. The root request message is tagged with the
identifier generated in step 525 and follows the inverse
reference graph established for the test object. The root
request message is transmitted to all the objects on the test
objects inverse reference graph.
AS will be explained in greater detail below in relation to

FIG. 6, the response that each receiving object makes to the
root request message indicates whether the receiving object
is locally rooted, or coupled to a locally rooted object as
identified by the receiving objects inverse reference graph
or whether a particular branch should be disregarded when
determining the garbage Status of the test object. The
response is either affirmative or disregard. In the preferred
embodiment, relevance is determined based upon whether a
branch includes a rooted object.

After transmitting the root request message at Step 530,
garbage collecting process 500 tests at step 535 whether an
incoming message is an affirmative reply. Each incoming
message from a reference object that is tagged with the
unique identifier is a reply message. If the reply message is
disregard, then garbage collecting proceSS 500 advances to
step 540 from step 535. Step 540 tests whether a reply has
been received from each reference object. If all of reference
objects have not replied to the root request message, garbage
collecting process 500 returns to step 535 to test the next
reply message.

However, if at step 540, the test determines that all of the
reply messages have been received, then garbage collecting
process 500 advances to step 545 instead of step 535. Step
545 identifies the test object as garbage (and in optional
embodiments step 545 may collect the test object) and
advances to step 550 to remove the test object from the
suspect list. After step 550, garbage collecting process 500
returns to step 510 to test whether there are any objects
remaining in the Suspect list.
With regard to the test of step 535, if at any time an

affirmative reply message is received, garbage collecting
process 500 advances to step 555 rather than to step 540.
Step 555 marks the test object as remotely rooted.
Thereafter, garbage collecting proceSS 500 advances to Step
550 to remove the test object from the suspect list. When the
Suspect list is empty, garbage collecting process 500 termi
nates at step 515.

5,991,779
7

FIG. 6 is a flowchart of a preferred method for a receiving
object operating process 600 to determine a response of any
object to an incoming root request message from a request
ing object. Receiving object operating proceSS 600 is appli
cable to every object referenced by a test objects inverse
reference graph, including all the reference objects as well
as the test object itself.

Receiving object operating proceSS 600 begins at Step
605, START, whenever an object receives an incoming root
request message. A receiving object first advances to Step
610 to test whether the identifier associated with the incom
ing root request message has already been Stored. Whenever
a receiving object has Stored the same identifier as the
identifier of an incoming root request message, it means that
it is processing the root request message and should there
fore ignore the later request. Therefore, if the test at step 610
is affirmative, then receiving object operating proceSS 600
advances to Step 615 to transmit a disregard reply to the
requesting object. After Step 615, receiving object operating
process 600 advances to step 620 to terminate receiving
object operating process 600.

However, if the test at step 610 is negative, then receiving
object operating proceSS 600 Stores the identifier associated
with the root request message received from the requesting
object at step 625. Thereafter, at step 630, receiving object
operating process 600 tests whether the receiving object is
locally rooted. If the receiving object is locally rooted,
receiving object operating process 600 advances to step 635.
At step 635, receiving object operating process 600 trans
mits an affirmative reply to the requesting object and there
after advances to Step 620 to terminate receiving object
operating process 600.

Should the test at 630 indicate that the receiving object is
not a locally rooted object, receiving object operating pro
cess 600 advances to step 640. At step 640, the receiving
object transmits its own root request message, tagged with
the identifier it received from the requesting object, to its
reference objects. After transmitting the root request mes
Sage at Step 640, receiving object operating process 600 tests
reply messages that the receiving object receives from its
reference objects. The test at step 645 determines whether
the reply message is affirmative. If the reply message is not
affirmative, receiving object operating proceSS 600 advances
to step 650 to test whether all replies have been received. If
not, receiving object operating process 600 returns to Step
645.

However, if at test 650, receiving object operating proceSS
600 determines that all replies have been received, receiving
object operating process 600 advances to step 655 from step
650. At step 655, the receiving object transmits a disregard
reply, tagged with the identifier, to the requesting object and
thereafter advances to Step 620 to terminate receiving object
operating process 600.

With regard to the test at step 645, if the reply message
from the reference object is affirmative, receiving object
operating process 600 advances to step 660. At step 660,
receiving object operating process 600 transmits an affir
mative reply, tagged with the identifier, from the receiving
object to the requesting object. Thereafter, receiving object
operating process 600 advances to step 620 and terminates.

15

25

35

40

45

50

55

60

8
In alternate embodiments, once a test object is determined

to be garbage by garbage collecting process 500, a test
object may send a collection message to objects referenced
in the inverse reference graph having the unique identifier,
that they too are garbage. Or the test object may send the
garbage collector the identifier and the garbage collector
may use the unique identifier to collect those obsolete
objects.

In conclusion, the present invention provides a simple,
efficient Solution to a problem of distributed garbage col
lection involving cycles. While the above is a complete
description of the preferred embodiments of the invention,
various alternatives, modifications, and equivalents may be
used. Therefore, the above description should not be taken
as limiting the scope of the invention which is defined by the
appended claims.
What is claimed is:
1. In a distributed computer System having a plurality of

concurrently active processes that have instantiated a plu
rality of objects in a memory associated with the distributed
computer System, a method of operating the distributed
computer System comprising the Steps of:

Selecting a Suspect object from the plurality of objects for
testing to determine whether said Suspect object is
garbage,

identifying an inverse reference graph for Said Suspect
object wherein each object of a subset of objects of the
plurality of objects referentially coupled to Said Suspect
object are represented as nodes on Said inverse refer
ence graph and Wherein each edge between a pair of
nodes defines a referential relationship between a pair
of objects of said subset of the plurality of objects;

testing each branch of Said inverse graph coupled from a
Suspect node associated with Said Suspect object to a
referring node associated with a referring object to
determine whether any branch of Said inverse reference
graph is relevant to establish whether said Suspect
object is garbage, and

identifying Said Suspect node as garbage when no branch
is relevant to establish whether Said Suspect node is
garbage.

2. The distributed computer operating method of claim 1
wherein Said testing Step comprises the Steps of:

generating an identifier;
transmitting a root request message, tagged with Said

identifier, to each object of a plurality of referring
objects of Said Suspect object as identified by branches
of Said inverse reference graph originating from Said
Suspect object wherein each branch receives a separate
root request message tagged with Said identifier; and

receiving a reply message, tagged with Said identifier,
from each branch, each Said reply message from any
particular branch indicating whether Said particular
branch is to be disregarded for determining whether
Said Suspect object is garbage.

k k k k k

